
Link for TASKING®

For Use with Real-Time Workshop®

Modeling

Simulation

Implementation

User’s Guide
Version 1

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Link for TASKING User’s Guide

© COPYRIGHT 2006 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

TASKING is a registered trademark of Altium Limited.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
May 2006 Online only New for Version 1.0 (Release 2006a+)
September 2006 Online only Version 1.0.1 (Release 2006b)

Contents

Getting Started

1
What Is Link for TASKING? . 1-2

Supported TASKING Toolsets . 1-4
Support for Other Versions . 1-4

Using This Guide . 1-6

Setting Target Preferences . 1-7
Target Preference Fields . 1-9

Working with Configuration Sets 1-13
Setting Build Action . 1-16

Link for TASKING Menus . 1-18
Start Menu Items . 1-18
Tools Menu Items . 1-20

Option Sets . 1-22

Link for TASKING Configuration Options 1-24

Known Limitations and Tips . 1-28
Build Process . 1-28
Processor-in-the-Loop (PIL) . 1-34

Build Process

2
Build Process Overview . 2-2

v

Code Generation Process . 2-2
Build Process . 2-3
Memory Placement Example . 2-3

Project-Based Build Process . 2-4
Target Project Space . 2-4

Template Projects . 2-5
Relocation of Template Projects . 2-5
How the Build Process Modifies the Relocated Template

Project . 2-6

Shared Libraries . 2-7
Utility Function Generation: Shared Location 2-7
Supporting Multiple Shared Utility Function Locations:

Build Subdirectory Name . 2-8

Build Process — Directory Structure 2-10
Command Line Project Information 2-11

Objects

3
Objects for Link for TASKING . 3-2

Classes . 3-3

Using Objects . 3-4
Creating an Object . 3-4
Determining the Available Methods for a Class 3-6
Obtaining Help for a Class Method 3-6
Calling a Method . 3-7
Determining the Available Properties for a Class 3-7
Accessing a Property . 3-7
Objects Demo Example . 3-7

List of Methods . 3-9

vi Contents

Methods for Class tasking.edeapi . 3-9
Methods for Class tasking.edeprojectspace 3-10
Methods for Class tasking.edeproject 3-10
Methods for Class tasking.xviewapi 3-10

Processor-in-the-Loop (PIL) Cosimulation

4
Overview of PIL Cosimulation . 4-2

Why Use Cosimulation? . 4-2
Definitions . 4-3
How Cosimulation Works . 4-4

Creating a PIL Block . 4-5

The PIL Cosimulation Block . 4-7

Building, Running, and Debugging PIL Applications . . 4-10
Building and Downloading PIL Applications 4-10
PIL Debugging . 4-11
Coverage and Profiling Reports . 4-13

Tutorials

5
Tutorial: Using Option Sets . 5-2

Tutorial: Creating New Template Projects 5-4
Tutorial: Creating a New Configuration 5-6

Tutorial: Configuring an Existing Model for Link for
TASKING . 5-8

Tutorial: Build Actions . 5-10

vii

Index

viii Contents

1

Getting Started

What Is Link for TASKING? (p. 1-2) Introduces Link for TASKING® and
its capabilities.

Supported TASKING Toolsets
(p. 1-4)

TASKING toolsets supported by
Link for TASKING.

Using This Guide (p. 1-6) Suggested path through this
document to get you up and running
quickly with Link for TASKING.

Setting Target Preferences (p. 1-7) Configuring Link for TASKING for
use with specific development tools.

Working with Configuration Sets
(p. 1-13)

A step-by-step example of
configuring a Link for TASKING
model for building with different
toolchains.

Link for TASKING Menus (p. 1-18) A quick guide to the functionality
available in the Start and Tools
menus, with links to instructions for
tasks.

Option Sets (p. 1-22) How to use preconfigured option sets
to switch target settings.

Link for TASKING Configuration
Options (p. 1-24)

A quick guide to Link for TASKING
options in the Model Explorer with
links to information on how to use
these settings.

Known Limitations and Tips (p. 1-28) A description of known limitations of
Link for TASKING, with suggestions
for workarounds.

1 Getting Started

What Is Link for TASKING?
Link for TASKING lets you build, test, and verify automatically generated
code using MATLAB®, Simulink®, Real-Time Workshop®, and the TASKING
integrated development environment. Link for TASKING makes it easy to
verify code executing within the TASKING environment using a test harness
model in Simulink. This processor-in-the-loop testing environment uses code
automatically generated from Simulink models by Real-Time Workshop
Embedded Coder. A wide range of DSPs and 8-, 16- and 32-bit microprocessors
and microcontrollers are supported including devices from Infineon, Renesas,
and Freescale. Link for TASKING provides customizable templates for
configuring hardware variants, automating MISRA C code checking, and
controlling the build process.

With Link for TASKING, you can use MATLAB and Simulink to interactively
analyze, profile and debug target-specific code execution behavior within
TASKING. In this way, Link for TASKING automates deployment of the
complete embedded software application and makes it easy for you to assess
possible differences between the model simulation and target code execution
results.

Features include:

• Automated project-based build process

Automatically create and build projects for code generated by Real-Time
Workshop or Real-Time Workshop Embedded Coder.

• Automated download and debugging

Rapidly and effortlessly debug generated code in the CrossView Pro
debugger, using either the instruction set simulator or real hardware.

• Processor-in-the-loop (PIL) cosimulation

Use cosimulation techniques to verify generated code running in an
instruction set simulator or real target environment.

1-2

What Is Link for TASKING?

• Highly customized code generation

Use Link for TASKING with any Real-Time Workshop System Target File
(STF) to generate target-specific and optimized code.

• Highly customized build process

Support for multiple TASKING Toolsets provides a route to a large number
of different target hardware platforms. Further customization is possible
by using custom project templates, giving access to all options supported
by the TASKING Toolset.

• MATLAB API for TASKING EDE (IDE)

Automate complex tasks in the TASKING EDE by writing MATLAB scripts
to communicate with the EDE.

For example, you could

- Automate project creation, including adding source files, include paths,
and preprocessor defines.

- Configure batch building of projects.

- Launch a debugging session.

- Execute CodeWright API Library commands.

• MATLAB API for TASKING CrossView Pro (Debugger)

Automate complex tasks in the TASKING CrossView Pro debugger by
writing MATLAB scripts to communicate with CrossView Pro, or debug
and analyze interactively in a live MATLAB session.

For example, you could

- Automate debugging by executing commands from the powerful
CrossView Pro command language.

- Exchange data between MATLAB and the target running in CrossView
Pro.

- Set breakpoints, step through code, set parameters and retrieve profiling
reports

1-3

1 Getting Started

Supported TASKING Toolsets
Link for TASKING includes at least one reference template project for each
supported toolset. The reference projects were created for specific versions of
each TASKING toolset and were used by The MathWorks for qualification
testing. The supported toolset versions are:

• Infineon TriCore: TASKING C/C++, CrossView Pro SIM for TriCore v2.3 r1
patch 1

• Infineon C166: TASKING Tools for C166/ST10 v8.6 r1

• Renesas M16C: TASKING Tools for M16C v3.1 r1 patch 2

• ARM: TASKING C Compiler for ARM v1.1 r1

• Freescale DSP563xx: TASKING Tools for DSP563xx v3.5 r3 patch 2

• 8051: TASKING Tools for 8051 v7.1 r3

The Renesas R8C family is supported by the Renesas M16C TASKING Toolset.

The Freescale DSP566xx Family is supported by the Freescale DSP563xx
Toolset.

Support for Other Versions
Check the Link for TASKING Product Support page for patches and
additional toolchain version information.

For minor release increments it may be sufficient to create new default
template projects. To do this, you must first specify the location of your
TASKING toolset in the Target Preferences (see “Setting Target Preferences”
on page 1-7) then run the tasking_generate_templates command. You must
specify your configuration description string, e.g.:

tasking_generate_templates('C166', true)

or

tasking_generate_templates('TriCore', true)

1-4

http://www.mathworks.com/support/product/product.html?product=LT

Supported TASKING Toolsets

Note Make sure you check the Link for TASKING Product Support page for
the latest information about toolchains qualified with the Link for TASKING.
You may be able to obtain patches in order to use other toolsets.

1-5

http://www.mathworks.com/support/product/product.html?product=LT

1 Getting Started

Using This Guide
To get started with Link for TASKING:

1 Follow the instructions in “Setting Target Preferences” on page 1-7.

2 After you set target preferences, follow the instructions in “Working with
Configuration Sets” on page 1-13 to see how to set up configurations using
an example model.

3 Try the demos to gain experience using Link for TASKING. Access the
demos in one of these ways:

• Click the link: “Link for TASKING Demos.”

• Select Start > Simulink > Link for TASKING > Demos.

• Enter demo('simulink', 'link for tasking') at the MATLAB
command line.

4 See “Link for TASKING Menus” on page 1-18 for a quick guide to the
functionality available in the menus, with links to more information.

See the following chapters to learn about Link for TASKING features:

• Chapter 2, “Build Process” explains the Link for TASKING build process.

• Chapter 3, “Objects” explains how to create and use Link for TASKING
objects.

• Chapter 4, “Processor-in-the-Loop (PIL) Cosimulation” describes how to
use PIL cosimulation.

• Chapter 5, “Tutorials” contains instructions to show you how to create new
configurations and template projects, how to use Link for TASKING with
existing models, and how to use different build actions.

1-6

Setting Target Preferences

Setting Target Preferences
You must configure your target preferences to use Link for TASKING.

Note Target preferences are persistent across MATLAB sessions. If you
have used a previous version of Link for TASKING, click Reset to Default
before setting up your new preferences, to ensure you use the latest values
for all fields.

1 Select Start > Simulink > Link for TASKING > TASKING Target
Preferences, or enter tasking_edit_prefs.

The TASKING Configuration Selection dialog box appears.

1-7

1 Getting Started

2 Select a predefined configuration from the list that matches your target, or
select Create new configuration to create a new configuration, and click
OK. For new configurations, see the tutorial section “Tutorial: Creating
a New Configuration” on page 5-6.

The TASKING Target Preferences Setup dialog box appears. You can
use this dialog box to configure the location of your toolchain executable
and other files.

3 Click the plus to expand Configuration Options. Similarly, expand
CrossView_Pro_Configuration and EDE_Configuration, as shown in
the example. This example is set up for the Infineon C166 Simulator
configuration.

4 Replace the string <ENTER_TASKING_PATH> to complete the path to the
CrossView_Pro_Executable, the DOL_File, and the EDE_Executable. See
the next section, “Target Preference Fields” on page 1-9, for details on each
field. The following example is set up for the Infineon TriCore Simulator
configuration.

1-8

Setting Target Preferences

If you have multiple configurations, you have to set them up in your target
preferences only once, and then it is simple to switch between them. See
the tutorial example “Working with Configuration Sets” on page 1-13.

5 Click OK to dismiss the TASKING Target Preferences Setup dialog box.

The next section explains each target preference field.

Target Preference Fields
Open the Target Preference Setup dialog box by selecting
Start > Simulink > Link for TASKING > TASKING Target Preferences,
or enter tasking_edit_prefs.

• Configuration

Select a configuration from the drop-down list. There are preconfigured
configurations for

- C166

- TriCore

- M16C

1-9

1 Getting Started

- ARM

- DSP563xx

- 8051

If you have multiple configurations, you have to set them up in your target
preferences only once, and then it is simple to switch between them. You
can switch between them using this target preference field.

Select a free configuration number to set up a new configuration from
scratch. See “Tutorial: Creating a New Configuration” on page 5-6.

• Configuration_Description

The title of the configuration. After it is created, this title is the name that
appears in the TASKING Configuration Description drop-down list in the
Configuration Parameters dialog box. Edit this field to change the name
of the configuration. These names are predefined for the preconfigured
configurations. For a new configuration enter a descriptive name (do not
include spaces).

• CrossView_Pro_Executable

Enter the full path to your TASKING CrossView Pro installation to replace
the string <ENTER_TASKING_PATH>. For example, for Configuration_1
for Infineon C166 Simulator:

D:\Applications\TASKING\c166\bin\xfw166.exe

• Initialization

This setting determines what the CrossView Pro Debugger executes when
it first starts. There are three options.

- Use .st Initialization_File This option is the default setting.
“.st” files are in an internal file format used by The MathWorks to
provide initialization options to CrossView Pro during debugger start up.
For example, a .st file may specify a CrossView Pro configuration file
(.cfg) and target type for CrossView Pro to use. Each of the option sets
shipped with Link for TASKING specifies a corresponding .st file. For
example, the c166_sim option set specifies the c166_default.st file,
which includes basic initialization commands for the C166 CrossView
Pro Simulator. See “Option Sets” on page 1-22 for related information.
To customize your CrossView Pro configuration, you should use one of
the .ini initialization options.

1-10

Setting Target Preferences

- Use .ini Initialization_File Use this option if you have a
custom .ini initialization file. The file should be a valid CrossView Pro
initialization file for your custom configuration. Refer to your CrossView
Pro application documentation for details.

- Use CrossView Pro Default .ini File Use this option if you want
to run CrossView Pro Default .ini file when launching the CrossView
Pro Debugger. When launching CrossView Pro you may be prompted to
make configuration selections. Refer to your CrossView Pro application
documentation to find the location of this .ini file, and for details of
CrossView Pro initialization files.

• Initialization_File

Full path of the initialization file corresponding to the Initialization
field.

• DOL_File

The full path to the TASKING EDE DOL file. For example, the
Infineon_C166_Simulator Configuration has the <ENTER_TASKING
PATH>_\etc\c166.dol as the dol file. You need to replace
<ENTER_TASKING_PATH> with your real TASKING installation path.

• EDE_Executable

Enter the full path to your TASKING EDE installation to replace the string
<ENTER_TASKING_PATH>. For example, for Configuration_1 for Infineon
C166 Simulator, enter

D:\Applications\TASKING\c166\bin\ede.exe

• Target_Project_Space

When you build models, new projects in the TASKING EDE will be created.
These projects belong to the project space defined in this entry. The default
setting is $(DEFAULT_LOCATION)\$(TEMPLATE_NAME)\projspace.psp. The
code generation process expands the $(DEFAULT_LOCATION) token with the
build directory of the model, and the $(TEMPLATE_NAME) token with the
name of the template application project. It is advisable to avoid changing
this default setting.

1-11

1 Getting Started

• Template_Application_Project

When you build a Simulink model with Link for TASKING, the generated
projects for your application in the TASKING EDE have the same project
settings as the template application project. This template project provides
a centric place to manage the project options (e.g., compiler settings, linker
settings, etc.) your Simulink models use during code generation. You
can modify the project settings of the default template projects or create
new ones. See “Link for TASKING Menus” on page 1-18 for information
on creating or opening template projects, and see “Template Projects” on
page 2-5.

• Template_Library_Project

The same as the Template_Application_Project field, but this is
applicable for Library projects.

• Use_State_File

Opens the TASKING EDE in its last saved state. For more information,
refer to your TASKING EDE documentation.

1-12

Working with Configuration Sets

Working with Configuration Sets
Follow the steps in this example to see where to find and change Link for
TASKING settings. These steps are described to help you find the settings
you need to get started using the demo models. To use the demos, you need to
specify your target by working with configuration sets. See “Configuration
Sets” in the Simulink documentation for more information.

This example describes how to use Link for TASKING to build a project from
a demo model using two different toolchains. The instructions refer to C166
and TriCore TASKING toolchains; adapt the instructions to your toolchain as
appropriate.

1 Open the model tasking_demo_enginewc.

2 Double-click the Active Configuration Set block to open the Model
Explorer (or select View > Model Explorer).

Under TASKING_demo_enginewc is a list of configuration sets. The currently
selected set is labeled (Active). Inspect the active configuration set.

1-13

1 Getting Started

a The default active configuration set for this model is C166_ert. If you
want to use a different target, right-click the configuration set that
matches your target, and select Activate.

b Click Link for TASKING to see the configuration settings, as shown
following.

c The TASKING configuration description drop-down list shows all
available target preference configurations. After you have set up target
preferences for particular configurations, you can switch between them
here (or in the Target Preferences dialog box).

i Click Edit Configuration to inspect your current target preferences.

ii Before building, you must replace the string <ENTER TASKING
PATH> to set up the correct paths to the target preferences
CrossView_Pro_Executable, the DOL_File, and the EDE_Executable.
See “Setting Target Preferences” on page 1-7.

iii Click OK to dismiss the TASKING Target Preferences Setup dialog
box.

1-14

Working with Configuration Sets

In the Link for TASKING demos, when you activate a configuration (e.g.,
C166_ert), the appropriate Tasking configuration description is
automatically selected (e.g., C166). You may want to select a different
target preference configuration description, e.g., if you have set up a
custom configuration (such as C167_user_hardware). For an example,
see “Tutorial: Creating a New Configuration” on page 5-6.

See “Link for TASKING Configuration Options” on page 1-24 for
information on other Link for TASKING settings in the Configuration
Parameters.

d Click Real-Time Workshop to see the selected system target file
ert.tlc.

Note You can use a configuration set specifying any system target file
with Link for TASKING.

e Click Hardware Implementation to see the C166 settings. If you
are using a different target, make sure the settings match your device.
Select from the Device type list. There are custom configurations and
preconfigured settings that include the following processors:

• Infineon C16x, XC16x

• Infineon TriCore

• ARM 7/8/9

• Renesas M16C

• 8051 Compatible

• Freescale DSP563xx (16-bit mode)

f Close the Model Explorer.

3 In the model tasking_demo_enginewc, right-click the t_eng_speed
subsystem, and select Real-Time Workshop > Build Subsystem. Click
Build in the dialog box to continue.

1-15

1 Getting Started

Watch the output messages in the MATLAB Command Window as code is
generated, your TASKING toolchain EDE is launched, and a new project
created.

If you have multiple toolchains, you have to set up your target preferences
only once, then it is simple to switch between different configurations. For
example, to switch configurations from C166 to TriCore targets:

1 In the model tasking_demo_enginewc, double-click the Active
Configuration Set block to open the Model Explorer.

2 Right-click TriCore_ert and select Activate. Close the Model Explorer.

3 To rebuild the subsystem with the new settings, right-click the t_eng_speed
subsystem, and select Real-Time Workshop > Build Subsystem.

Watch the output in the MATLAB Command Window as code is generated,
the TASKING C166 EDE is closed, the TASKING TriCore EDE is launched,
and the new project created.

You can follow similar steps to specify your target in the demo models. See
the “Link for TASKING Demos.”

To switch between simulator and hardware implementations for the same
target configuration, you can use option sets. See “Option Sets” on page 1-22.

The next section describes using the build action setting in this example.

Setting Build Action
In this example, the project is created but not built in the TASKING EDE.

To view this setting:

1 In the model tasking_demo_enginewc, select
Simulation > Configuration Parameters.

2 Click Link for TASKING to see the Build Configuration parameters.

3 Look at the Build Action drop-down list.

1-16

Working with Configuration Sets

Using this drop-down list, you can set what action to take after the
Real-Time Workshop build process completes. You can create application
and library projects in the TASKING EDE and then stop, or you can also
choose to build, execute, or debug.

If you choose to build, execute, or debug, CrossView Pro will be launched.

Note The first time you build this model it will take a few minutes to
compile the required Real-Time Workshop floating point library. This
library is not rebuilt on subsequent builds unless necessary.

For more information on other build actions, see “Tutorial: Build Actions”
on page 5-10.

1-17

1 Getting Started

Link for TASKING Menus
This section describes the menu items, with links to instructions.

• “Start Menu Items” on page 1-18

• “Tools Menu Items” on page 1-20

Start Menu Items
Common tasks are available in the Start menu. Select
Start > Simulink > Link for TASKING, as shown in the
following figure, to see the following submenu options.

1-18

Link for TASKING Menus

• TASKING Target Preferences

Opens the TASKING Configuration Selection dialog box, and after you
choose a configuration to match your target (e.g., TriCore), you can edit the
TASKING Target Preferences Setup dialog box. In this dialog box, you can
modify your TASKING preferences configurations. You can also open this
dialog box from the MATLAB prompt by typing TASKING_edit_prefs.

You must set up your target preferences before you can use Link for
TASKING. See “Setting Target Preferences” on page 1-7.

• Select Preconfigured Target Preference Settings

Opens the TASKING Configuration Selection dialog box. Choose a
configuration to match your target and click OK. Then you can select
a preconfigured option set. Your target preferences are automatically
updated according to the option set you select, for example, specifying
either hardware or simulator settings. See “Option Sets” on page 1-22.

• Launch and Test Communication with TASKING EDE

Opens the TASKING Configuration Selection dialog box. Choose a
configuration and click OK, and Link for TASKING tests whether MATLAB
can communicate successfully with the EDE for the selected configuration.
You see messages at the command line to confirm whether communication
is successful.

• Create a New Model (configured for Link for TASKING)

Creates a new untitled Simulink model, with Link for TASKING
configuration set options already added. You can also configure an existing
model by selecting the Simulink model menu item Tools > Link for
TASKING > Add Link for TASKING Configuration to Model.

• View, Modify, and Copy Configuration Sets via Model Explorer

Opens the Model Explorer where you can edit all configuration sets
available for each currently open model.

• Create New Template Projects

The Link for TASKING product ships with preconfigured application and
library template projects for the default configurations in the TASKING
Preferences. You might, however, create your own template projects
(using preconfigured options as a starting point), and use them with any

1-19

1 Getting Started

configuration. See “Tutorial: Creating New Template Projects” on page 5-4
for an example, and “Template Projects” on page 2-5 for more information.

This option opens the TASKING Configuration Selection dialog box.
Choose a configuration and click OK, and Link for TASKING launches the
appropriate TASKING EDE and creates new template projects for a specific
TASKING configuration. You are prompted to choose a project directory, a
template name, and an option set. See “Option Sets” on page 1-22 for more
details. app_template_name.pjt and lib_template_name.pjt are created
for the configuration you selected.

• Open Existing Template Projects

Opens the existing application and library template projects in the
TASKING EDE for the selected TASKING configuration. You can
modify these options; however, it is preferable to do this by first creating
new template projects, which avoids overwriting the default template
projects. If you modify the default template projects, you can use the
following function to recreate the defaults: tasking_generate_templates.
You must specify your configuration description string, e.g.:
tasking_generate_templates('C166', true).

• Demos

Opens the Link for TASKING Demos page in the Help browser.

Tools Menu Items
In a Simulink model, you can access Link for TASKING items in the Tools
menu. Select Tools > Link for TASKING to see the following submenu
items.

• TASKING Target Preferences

As in the Start menu, opens the TASKING Configuration Selection
dialog box, and once you have chosen a configuration, you can edit the
TASKING Target Preferences Setup dialog box. You must set up your
target preferences before you can use Link for TASKING. See “Setting
Target Preferences” on page 1-7.

• Add Link for TASKING Configuration to Model

Adds Link for TASKING configuration options to the model configuration
parameters.

1-20

Link for TASKING Menus

To see exactly which configuration parameter settings are changed, refer to
tasking_addto_configset.m. Enter edit tasking_addto_configset.

• Remove Link for TASKING Configuration from Model

Removes Link for TASKING configuration options from the model’s
configuration parameters.

• Options

Opens the Configuration Parameters dialog box to show Link for TASKING
options. See “Link for TASKING Configuration Options” on page 1-24.

1-21

1 Getting Started

Option Sets
Option sets are preconfigured settings to specify the target configuration for
the TASKING tools. For example, after you set up your target preferences for
a Tricore configuration, you can use option sets to switch between using an
instruction set simulator configuration, two hardware board configurations,
or a simulator with some MISRA-C rule checking.

You can either

• Use option sets to switch between default target configurations, or

• Use option sets when creating new template projects, to set up an initial
configuration that you can choose to modify later

See “Tutorial: Using Option Sets” on page 5-2 for instructions.

The following preconfigured option sets are available.

A notation of “*” indicates the default in the Target Preferences. The processor
type for the default configurations below is defined by your Tasking toolchain.

• Infineon TriCore:

- * tricore_sim: Default instruction set simulator configuration.

- tricore_sim_misra: As tricore_sim, but with some example
MISRA-C rule checking enabled. See also the TriCore MISRA-C demo
example, tasking_demo_misra.m, with instructions under Link for
TASKING Demos.

- tricore_1796b: Infineon TriCore 1796b hardware configuration.

- tricore_1766b: Infineon TriCore 1766b hardware configuration.

• Infineon C166:

- * c167cs_sim: Infineon C167CS instruction set simulator configuration.

- c166_sim: Default instruction set simulator configuration.

- c167cs_hw: As c167cs_sim, but targeting hardware rather than
simulator.

1-22

Option Sets

• Renesas M16C

- * m16c_sim: Default instruction set simulator configuration.

- r8ctiny_sim: Renesas R8C Tiny instruction set simulator configuration.

• Freescale DSP563xx:

- * dsp563xx_sim: DSP563xx Family, 16-bit memory model, instruction
set simulator configuration.

- dsp566xx_sim: DSP566xx Family instruction set simulator
configuration.

• ARM:

- * arm_sim: Default instruction set simulator configuration.

- arm_sim_big_endian: As arm_sim, but in big-endian mode.

• 8051:

- * i8051_sim: Default, large memory model, no language extensions,
floating point, instruction set simulator configuration.

1-23

1 Getting Started

Link for TASKING Configuration Options

Note To add Link for TASKING configuration options to a model, select
the menu item Tools > Link for TASKING > Add Link for TASKING
Configuration to Model.

To see Link for TASKING configuration options, navigate to the configuration
parameters by any of the following paths:

• Simulation > Configuration Parameters in a model

• Tools > Link for TASKING > Options in a model

• View > Model Explorer in a model

• Start > Simulink > Link for TASKING > View, Modify and Copy
Configuration Sets via Model Explorer in MATLAB

Click Link for TASKING to see the following options.

1-24

Link for TASKING Configuration Options

1-25

1 Getting Started

The following options are available under Build Configuration:

• Build action

Set what action to take after the Real-Time Workshop build process. You
can create application and library projects in the TASKING EDE and then
stop, or you can also choose to build, execute, or debug. See “Tutorial: Build
Actions” on page 5-10 for more details.

• TASKING configuration description

Select target preference configurations. The names correspond to the
Configuration Description for each configuration in the TASKING
Target Preferences Setup dialog box. Click Edit Configuration to open
the TASKING Target Preferences Setup dialog box for the currently
selected configuration. See “Working with Configuration Sets” on page 1-13.

• Specify build subdirectory name

Select the check box to specify a subdirectory name and avoid “shared
utility function” code generation errors. Prior to code generation, Link for
TASKING changes to the specified build subdirectory to avoid conflicts
over the shared utility location. Clear this check box to use the default
Real-Time Workshop build without using a subdirectory — not using a
subdirectory may result in rebuilding shared libraries unnecessarily. See
“Shared Libraries” on page 2-7 and particularly “Supporting Multiple
Shared Utility Function Locations: Build Subdirectory Name” on page
2-8 for details.

• Build subdirectory name

Enter a name for the subdirectory in the edit box.

The following options are available under Export Handles:

• Export EDE handle to MATLAB base workspace

Select this check box to export the EDE object handle to the workspace.

• EDE handle name

Enter a MATLAB variable name for the exported handle.

• Export CrossView Pro handle to MATLAB base workspace

1-26

Link for TASKING Configuration Options

Select this check box to export the CrossView Pro object handle to the
workspace.

• CrossView Pro handle name

Enter a MATLAB variable name for the exported handle.

See Chapter 3, “Objects” for information on using these object handles.

The following options are available under Processor-in-the-Loop (PIL)
Verification:

• Configure model to build PIL algorithm object code

Select this box to build PIL algorithm code.

• PIL block action

Select one of the following PIL block actions

- Create PIL block, then build and download PIL application

Select this option to automatically build and download the PIL
application after creating the PIL block. This is the default when you
select the option to configure the model for PIL.

- Create PIL block

Choose this to create the PIL block and then stop without building. You
can build manually from the PIL block.

- None

Choose this to avoid creating a PIL block, for instance if you have already
built a PIL block and do not want to repeat the action.

See Chapter 4, “Processor-in-the-Loop (PIL) Cosimulation” for more
information on using PIL settings.

1-27

1 Getting Started

Known Limitations and Tips
The following issues are known limitations with Link for TASKING, with
suggestions for workarounds where possible.

Build Process

• “EDE Is Slow, Unresponsive, or Crashes” on page 1-28

• “Signal Processing Blockset Library Build Failures” on page 1-29

• “Model Reference Is Not Supported” on page 1-30

• “Real-Time Workshop “grt.tlc”-Based Targets Are Only Supported for
32-Bit Targets” on page 1-30

• “Use ERT Target for TASKING TriCore 1766B” on page 1-31

• “Memory Block Freed Twice Error” on page 1-31

• “8051 EDE Cannot Compile Files with Long Names” on page 1-31

• “8051 Compiler Bug: Assertion Failure” on page 1-32

• “ARM GRT Build Failure” on page 1-32

• “DSP563xx Toolset Support Limitations” on page 1-32

• “ “Create, Build and Execute Application Project” Build Action Fails ” on
page 1-33

• “C166 Toolset Warnings” on page 1-34

EDE Is Slow, Unresponsive, or Crashes
Tool Suites: All

Problem: Under certain circumstances the TASKING EDE may become
slow, unresponsive, or even terminate with virtual memory problems. This
limitation is an open issue with the TASKING EDE.

Workaround: Take one or both of the following actions:

• Close the EDE and try building the model again

1-28

Known Limitations and Tips

• Try deleting the symbol database file, cwright.sbl, which can be found in
the EDE_Executable directory ($TASKINGRootDir\bin)

Signal Processing Blockset Library Build Failures
The following problems have been found with Signal Processing Blockset
(“DSP lib”) library builds:

• With Renesas M16C, building the Signal Processing Blockset library with
floating point support enabled results in the following error:

TASKING program builder v3.1r1 Build 076 SN 00100552
Assembling qrdc_z_rt.src asm16c E219:
["qrdc_z_rt.src" 1692] expression out of range
(0 and FF hexadecimal)wmk:
*** action exited with value 1.

This limitation is a known issue with the Renesas 16C compiler.
Workaround: Disable floating point support in the model.

• With 8051, when trying to build DSP libraries, you may see the following
errors with floating- and fixed-point versions:

TASKING program builder v7.1r3 Build 076 SN 00123456
Compiling g711_enc_a_sat_rt.c
cc51 S533: D:\work_dirs\tasking_bugs\8051_fixed_point_dsplib\
g711_enc_a_sat_rt.c: line 34: assertion failed - please report
wmk: *** action exited with value 2.
wmk: "g711_enc_a_sat_rt.src" removed.

TASKING program builder v7.1r3 Build 076 SN 00123456
Compiling burg_a_c_rt.c
wmk: *** action exited with value -1073741571.
wmk: "burg_a_c_rt.src" removed.

This limitation is a known issue with the 8051 compiler. Workaround: none.

• With ARM, when trying to build DSP libraries, you may see the following
errors with floating- and fixed-point versions:

TASKING program builder v1.1r1 Build 078 SN 00123456
Compiling "..\..\..\..\..\..\aetargets with spaces\matlab\

1-29

1 Getting Started

toolbox\rtw\dspblks\c\dspendian\is_little_endian_rt.c"
carm S917: internal consistency check failed - please report
wmk: *** action exited with value 1.

TASKING program builder v1.1r1 Build 078 SN 00123456
Compiling "..\..\..\..\..\..\aetargets with spaces\matlab\
toolbox\rtw\dspblks\c\dspendian\is_little_endian_rt.c"
carm S917: internal consistency check failed - please report
wmk: *** action exited with value 1.

This limitation is a known issue with the ARM compiler. Workaround:
none.

Model Reference Is Not Supported
Tool Suites: All

Problem: Model reference is not yet supported by Link for TASKING. An
informative error is provided.

Workaround: None.

Real-Time Workshop “grt.tlc”-Based Targets Are Only
Supported for 32-Bit Targets
Tool Suites: Infineon C166, Renesas M16C, 8051, DSP563xx

Real-Time Workshop “grt.tlc”-based targets are not supported for non–32-bit
targets. If you use an unsupported combination you see an error of this form:

Error using ==> RTW.makertw.PCGHook
Error encountered while executing PostCodeGenCommand:
Error using ==> tasking_post_code_gen_hook>i_processBuildArgs
This model requires support for non-finite floating point values
("rt_nonfinite.c").

"rt_nonfinite.c" only compiles on targets with at least a 32-bit
word size.
However, this target has a word size of only: 16 bits.
To avoid this error you can switch to an ERT-based target and
uncheck "non-finite numbers" in the RTW Interface configuration
settings, however you will not be able to use non-finite

1-30

Known Limitations and Tips

floating point values in the model.

Workaround: Use a Real-Time Workshop “ert.tlc”-based target.

Use ERT Target for TASKING TriCore 1766B
The 1766b has no external memory. You should use ERT rather than GRT
when targeting this board, due to memory resource constraints. The ERT
(embedded real time) target is optimized for size and speed, while the GRT
(generic real time) target is designed for ease of prototyping which incurs
extra memory usage.

If you use the GRT target you may see compilation errors like the following:

ltc E117: conflicting restriction for sections ".text.libc" and
".text.trapvec.000": absolute restrictions overlap

Memory Block Freed Twice Error
Occasionally, when the Link for TASKING is creating projects in the
TASKING EDE, the following error appears: Memory block freed twice.
This limitation is a known issue with the TASKING EDE.

To work around the problem, click OK in the error dialog box, and the code
generation process continues as normal.

8051 EDE Cannot Compile Files with Long Names
If you encounter this problem, you receive an error message similar to the
following:

Assembling tasking_fuel_controller_ert_rtw_pil_cstart.src

asm51 E001: tasking_fuel_controller_ert_rtw_pil_cstart.src: line 1:

syntax error

wmk: *** action exited with value 1.

This message indicates that the full path of the model or subsystem you are
trying to build is too long. Consider moving the model to a shorter directory
name, or renaming the model, subsystem, or both to use shorter names.

1-31

1 Getting Started

8051 Compiler Bug: Assertion Failure
When building 8051 projects you may see the following error:

TASKING program builder v7.1r3 Build 076 SN 00123456

Compiling compilerassertion.c

cc51 S518: D:\Applications\tasking\8051\v7.1r3\examples\banksw\
compilerassertion.c: line 23: assertion failed - please report

wmk: *** action exited with value 2.

wmk: "compilerassertion.src" removed.

This limitation is a known issue with the 8051 compiler. Workaround: None.

ARM GRT Build Failure
With ARM, when building with the grt system target file, you may see the
following error:

TASKING program builder v1.1r1 Build 078 SN 00123456
Compiling "..\..\slprj\grt_sharedutils\rt_nonfinite.c"
carm S917: internal consistency check failed - please report
wmk: *** action exited with value 1.

This limitation is a known issue with the ARM compiler. Workaround: None.

DSP563xx Toolset Support Limitations
The following limitations affect use of the DSP563xx Toolset:

• Only 16-bit mode for the DSP563xx Family is supported. As for other 16-bit
targets, Real-Time Workshop “grt.tlc”-based targets are not supported; for
this toolset the "GRT Compatible Call interface" option in the Real-Time
Workshop Interface settings is also not supported. This limitation
is because of the non-standard size of single- and double-precision
floating-point datatypes on this architecture (tmwtypes.h will not compile)

• The DSP5600x Toolset is NOT supported because none of the processors
supported by this toolset have 16-bit memory models.

1-32

Known Limitations and Tips

• PIL is not supported for the DSP563xx Toolset because it is a word
addressable architecture and this is not yet supported by PIL. Only byte
addressable architectures are supported.

• Both 16-bit memory models of the DSP563xx Family produce watch errors
(wrong values displayed) in CrossView Pro because of an issue with the
TASKING toolset. CrossView Pro does not know that the datatype sizes
should be different according to the selected memory model. This issue
does not affect the DSP566xx Family.

“Create, Build and Execute Application Project” Build Action
Fails
Tool Suites: Renesas M16C

Executing the application project, rather than debugging (via “Create,
Build and Debug Application Project) does not work correctly, because the
CrossView Pro Simulator does not know the start address when debugging
information is not loaded. The application does not execute.

Workaround: After CrossView Pro launches:

1 Stop execution by clicking the Halt button.

2 Execute the following command in the CrossView Pro command window to
determine the application entry point stored at location 0xfffffc:

*((unsigned long *)0xfffffc)/x

Example output for this command is:

0xfffffc = 0x000d0000

3 Change the execution position to the application entry point by executing
the "gi" command, using the output of the previous command. For example,
0xd0000 gi

4 Resume execution by clicking the Run/Continue button.

1-33

1 Getting Started

Alternatively, use the “Create, Build and Debug Application Project” build
action.

C166 Toolset Warnings
When using the C166 toolset you may see warnings similar to the following:

Warning: missing "sdc_lia" or "sdc_lip" lifetime record

This warning is caused by a problem with the TASKING toolset and has
been registered with Altium as PR35043. It is related to debug life time
information.

The warning can be ignored safely.

Processor-in-the-Loop (PIL)
The following issues affect the use of PIL:

• “10-Second Pause on Termination of the CrossView Pro Debugger” on page
1-35

• “TASKING TriCore 1766B PIL Limitation” on page 1-35

• “8051 Link-Order Issue Can Cause PIL Application Failure” on page 1-35

• “8051 PIL Timeout Errors” on page 1-36

• “Buses and Mux Signals Not Supported at PIL Component Boundary”
on page 1-36

• “Signals with Custom Storage Classes Not Supported at PIL Component
Boundary” on page 1-36

• “Continuous Sample Times Not Supported” on page 1-36

• “Real-Time Workshop “grt.tlc”-Based Targets Not Supported” on page 1-36

• “Enabled / Triggered Subsystems Are Not Supported” on page 1-36

• “No Support for TASKING Feature “Treat double as float”” on page 1-37

• “TASKING Optimization Settings May Cause Incorrect Cosimulation
Results” on page 1-37

• “Export Functions Feature Is Not Supported” on page 1-38

1-34

Known Limitations and Tips

10-Second Pause on Termination of the CrossView Pro
Debugger
When you terminate an instance of the CrossView Pro debugger application
that was launched by Link for TASKING, there is a pause of about 10 seconds
before the CrossView Pro window closes. This 10-second pause is the intended
behavior of CrossView Pro when acting as a COM server; CrossView Pro
pauses for the 10 seconds to wait for clients such as MATLAB to release their
COM references.

TASKING TriCore 1766B PIL Limitation
The demos “tasking_demo_pil_toplevel_testharness” and
“tasking_demo_pil_library_testharness” do not work correctly for
PIL, because of a TASKING issue relating to setting breakpoints. The PIL
application does not download correctly in CrossView Pro and causes a
60-second pause in MATLAB before the following error occurs:

Error using ==> tasking.xviewapi.executeAndWait
Command "s", sequence number 14, timed out after 60 seconds.

Other PIL demos such as tasking_demo_autotrans do work correctly.
However, customers’ PIL models on this platform may run into the same issue.

8051 Link-Order Issue Can Cause PIL Application Failure
When building PIL applications for 8051 you may see linker warnings similar
to the following:

link51 W001: unresolved external symbol
'_?BINARYSEARCH_S16', module t_fuelsys.obj

link51 W001: unresolved external symbol
'_?DotProduct_s32s16', module t_fuelsys.obj
link51 W001: unresolved external symbol
'_?INTERPOLATE_S16_S16_SAT', module t_fuelsys.obj

If such a message appears, the PIL block reports that an error has occurred
during cosimulation.

Workaround: if you encounter this you can contact TASKING for a patch to
make it possible to use the multipass option to rescan multiple libraries.

1-35

1 Getting Started

8051 PIL Timeout Errors
See limitation and workaround details in .

Buses and Mux Signals Not Supported at PIL Component
Boundary
Buses and MUX Signals are not supported at the PIL component boundary.

Workaround: None.

Signals with Custom Storage Classes Not Supported at PIL
Component Boundary
Signals with Custom Storage Classes are not supported at the PIL component
boundary.

Workaround: None.

However, note that the standard noncustom storage classes, like
ExportedGlobal, are supported.

Continuous Sample Times Not Supported
Continuous sample times are not supported by PIL. If you encounter this
you see the following error:

??? Processor-in-the-Loop (PIL) does not support continuous
time. Please uncheck "continuous time" in the RTW Interface
configuration set options or disable PIL.

Workaround: None. You must use discrete sample times.

Real-Time Workshop “grt.tlc”-Based Targets Not Supported
Real-Time Workshop “grt.tlc”-based targets are not supported for PIL.

Workaround: Use a Real-Time Workshop “ert.tlc”-based target.

Enabled / Triggered Subsystems Are Not Supported
Enabled / Triggered subsystems are not supported for PIL.

1-36

Known Limitations and Tips

Workaround: None.

No Support for TASKING Feature “Treat double as float”
You can enable the feature in a TASKING project to treat the double precision
floating point datatype “double” as the single precision floating point datatype
“float”. Usually, this means that double precision floating point datatypes are
represented in 4 bytes rather than 8 bytes.

PIL always assumes that the “double” datatype is represented normally. If
you enable the “Treat double as float” override, PIL does not correctly transfer
“double” datatypes between host and target, and cosimulation errors occur.
The default templates that ship with Link for TASKING do not enable the
override.

Workarounds:

• Do not use the option to treat “double” as “float”. In this case, double
precision floating point values are represented normally.

• Use the “single” datatype in Simulink rather than “double”. In this case,
the option to treat “double” as “float” will have no effect on PIL, because no
“double” datatypes are used.

TASKING Optimization Settings May Cause Incorrect
Cosimulation Results
Sometimes, you may observe differences between simulation and PIL
cosimulation results. The code compiled and running in the TASKING
environment may not always behave correctly, even when the generated code
is correct. One cause of this issue, particularly with the TriCore toolset, is the
compiler optimization configuration used to build the generated code.

Workaround: If you see differences between simulation and PIL cosimulation
results, try setting the compiler optimization settings in the template projects
to either No optimization, Debug purpose, or a similar equivalent for your
TASKING toolset. Then, build the PIL algorithm and PIL application again
and try repeating the cosimulation.

To create new template projects and modify their project settings see
“Tutorial: Creating New Template Projects” on page 5-4.

1-37

1 Getting Started

Export Functions Feature Is Not Supported
The Real-Time Workshop feature “Export Functions” is not supported.

Workaround: None.

1-38

2

Build Process

Build Process Overview (p. 2-2) Understanding the build process.

Project-Based Build Process (p. 2-4) About projects and target project
space.

Template Projects (p. 2-5) About template projects.

Shared Libraries (p. 2-7) About shared libraries and build
subdirectory names.

Build Process — Directory Structure
(p. 2-10)

Explains the build process directory
structure and how to locate files.

2 Build Process

Build Process Overview
Link for TASKING provides a customized build process that is designed
to work with the highly customized code generation process provided by
Real-Time Workshop.

To explain the separation of duties between Real-Time Workshop and Link for
TASKING, the following sections discuss the terms code generation process
and build process.

Code Generation Process
The code generation process is performed by the Real-Time Workshop family
of products and is the process of translating a Simulink model into C code.

Customized code generation, perhaps to create target-specific device drivers
or target-optimized code, is often a key requirement for users who want to
generate code from Simulink models.

Real-Time Workshop and Real-Time Workshop Embedded Coder provide a
variety of mechanisms for users to customize the code generation process. For
example, the standard code generation process, using the regular system
target files (like grt.tlc and ert.tlc) can be customized by making changes
to the model’s configuration parameters. Alternatively, for an even greater
level of customization, including the ability to define custom Real-Time
Workshop options, you can use a user created system target file.

The demos that come with Link for TASKING make use of the first type of
customization with regular system target files. That is, the standard code
generation process has been tailored for the appropriate target platform
simply by changing the model’s configuration parameters.

For greater flexibility, you should use a custom system target file. For
further details on customizing the code generation process, see the Real-Time
Workshop and Real-Time Workshop Embedded Coder documentation.

2-2

Build Process Overview

Build Process
The build process is performed by Link for TASKING and is the process of
taking the C code produced by the code generation process and building
(assembling, compiling, and linking) it for the target platform.

A customized build process, perhaps to use optimized compiler and linker
settings, or perhaps to produce a MISRA compliance report, is often a key
requirement for users wishing to build code produced from Simulink models.

Link for TASKING provides access to the full build process customization
capabilities of the TASKING tools by allowing the user to set up the exact
required configuration in TASKING. Link for TASKING then uses this
configuration as a template for the build process.

Memory Placement Example
As an example, to consolidate the descriptions above of code generation and
the build process, consider the common task of placing program data into a
particular area of memory on a target platform.

Usually, this is achieved by using compiler-specific notations (like #pragmas)
to define special memory sections and to assign data definitions to those
sections. Additionally, a linker command file defines the different available
memory regions on the target, and where in these regions the different
memory sections should be located.

Splitting this task between the processes of code generation and building
could be done as follows:

1 Customized code generation defines memory sections and assigns data.

2 Customized build process defines memory regions and assigns memory
sections.

2-3

2 Build Process

Project-Based Build Process
The Link for TASKING build process automatically creates TASKING EDE
projects representing the application and libraries to be built.

A Real-Time Workshop application usually consists of some application code
that makes references to modules that are part of libraries like the Real-Time
Workshop library. Another common library is the Signal Processing Blockset
library, used with the Signal Processing Blockset.

Link for TASKING creates separate projects for the main application code
and each required library. The required libraries are included in the main
application projects as subprojects.

Although the build process is project-based, underlying the projects are
“makefiles” that can be used independently of the EDE. For an example of
how to obtain the appropriate make command, see the demo instructions in
tasking_demo_objects.m .

Target Project Space
Link for TASKING places projects in a project space known as the
target project space. The location of the target project space is controlled
by the Target_Project_Space setting in the Target Preferences, and
usually depends on the name of the template application project (see
$(TEMPLATE_NAME) token) that triggered the build process, as well
as the current directory at the time the build process is invoked (see
$(DEFAULT_LOCATION) token).

2-4

Template Projects

Template Projects
Template projects are regular TASKING EDE projects that are used by Link
for TASKING to allow customization of the build process. Template projects
are tied to particular TASKING Configurations as set up in the Target
Preferences.

There are two types of template projects: application, and library template
projects.

The application template project is used as the template for application
projects and the library template project is used as the template for library
projects.

Relocation of Template Projects
During the build process, the template project is copied to a target project
location, and is then populated with the information relating to how to build
the generated code.

Therefore, the project options of the template project become the project
options of the target project, and hence the build process is customized
according to the template project.

On subsequent build processes, Link for TASKING determines whether
the template project has been updated since it was last copied to the target
project location. If it has, then the target project is updated with a new copy
of the template project. Otherwise, the target project is not updated from
the template project.

Note Project options should be updated in the template project and not in
the target project.

2-5

2 Build Process

How the Build Process Modifies the Relocated
Template Project
The Link for TASKING build process determines if any changes (preprocessor
defines, include paths and source files) to the target project are required to
build the code associated with a particular model, and updates the target
project only if required. Thus, unnecessary project rebuilding is avoided.

Any include paths and preprocessor defines in the template project is always
maintained in the target project. Maintaining this information is useful for
keeping the include path to the compiler’s standard header files, and setting
global defines.

Additionally, the optional startup code file automatically generated by the
EDE is also maintained.

Note Adding any other source files to your template project is not supported
and will result in errors. Instead, you should add source files to the project by
adding them to the Real-Time Workshop Build Info object by using either the
Real-Time Workshop Custom Code settings in the configuration parameters,
the rtwmakecfg.m mechanism, or by writing your own post code generation
command (taking care not to overwrite any existing commands). See the
Real-Time Workshop documentation for details.

2-6

Shared Libraries

Shared Libraries
Link for TASKING models that share the same target project space share
required libraries such as the Real-Time Workshop library. Sharing of
libraries means that a library is only built the first time a model that requires
it is built.

The advantages of this shared library approach are

• No unnecessary per-model building of libraries; models with similar library
requirements (e.g., integer code only) can share libraries.

• Libraries are built with the project options specified in the corresponding
template project.

• Multiple sets of libraries, each with custom model, project options, or both
can coexist.

Utility Function Generation: Shared Location
The shared library approach uses the Real-Time Workshop “Utility Function
Generation” feature.

By setting utility function generation to use a shared location, rather than the
model-specific default, you can ensure that the library projects created have
no dependence on model-specific generated code. This feature is the key to
allowing library projects to be shared between models.

As an example, consider the generated header file, rtwtypes.h, that contains
the set of Real-Time Workshop data types available for compiling code
modules, including any libraries.

With the utility function generation set to the default, individual rtwtypes.h
files are generated into each code generation directory. Therefore, multiple
definitions of rtwtypes.h would exist for a library shared between these
models. The problem is, how can one of these rtwtypes.h files be chosen
to build the library?

Setting the utility function generation to use a shared location provides a
solution. In this case, a single rtwtypes.h file is generated into a directory

2-7

2 Build Process

shared between a set of models. This single file can be used to build the
library without any dependence on the model-specific generated code.

Supporting Multiple Shared Utility Function Locations:
Build Subdirectory Name
The approach outlined in the previous section works well for a single set of
models that have the same shared utility requirements.

However, what happens if you have two sets of models, each set with different
shared utility requirements?

Normally, the Real-Time Workshop code generation process uses the current
working directory as the location for generated files. In this location, it
supports only a single shared utilities directory for each system target file.
Therefore, it is possible for conflicts over the contents of the shared utility
directory to occur.

For example, this would occur if the Hardware Implementation settings were
different for two models using the same system target file. If the standard
grt.tlc or ert.tlc code generation process is customized by changing
configuration set parameters, this situation is highly likely to occur.

Another common example of this conflict, for two models sharing the
same system target file, would be if one model was configured to support
floating-point numbers and the other was configured to support integer code
only.

To work around this problem, Link for TASKING provides the “Specify Build
Subdirectory Name” and “Build Subdirectory Name” settings.

During a Link for TASKING build, if the Specify Build Subdirectory Name
check box is enabled then the name specified in the Build Subdirectory
Name setting is used as the name of a directory to change to from the current
working directory location. If this directory does not exist, it is created
automatically.

Therefore, specifying the same build subdirectory name for a similar set of
models allows them to generate code into their own working directory, avoiding
conflict with other models, while still allowing a shared utilities directory.

2-8

Shared Libraries

At the end of the build process, the original working directory is restored.

This feature of Link for TASKING removes the need for the user to manually
manage changing directories to avoid shared utility directory conflicts.

See the demo models for examples of using this setting: Link for TASKING
Demos.

2-9

2 Build Process

Build Process — Directory Structure
The following table shows the typical directories that are created, relative
to the current working directory, during the Real-Time Workshop code
generation process and the Link for TASKING build process. Library files
are specific to library builds.

Note If the Link for TASKING Build Subdirectory option is being used, then
the directories in the table are relative to the build subdirectory.

Directory Contents

$(TEMPLATE_NAME)\pjt_$(CODEGEN) Main application project:
$(CODEGEN).pjt and associated files
(only for application builds).

$(TEMPLATE_NAME)\pjt_exp_-
$(CODEGEN)

Main library project:
exp_$(CODEGEN).pjt and associated
files (only for library builds).

$(TEMPLATE_NAME)\pjt_rtwlib
(if required)

Real-Time Workshop library project:
rtwlib.pjt and associated files.

$(TEMPLATE_NAME)\pjt_rtwshared
(if required)

Shared utilities library project:
rtwshared.pjt and associated files.

Key

$(CODEGEN) Real-Time Workshop code generation
directory name

$(TEMPLATE_NAME) Token expanded from the name of
the template application project in
the target preferences. If the project
name is prefixed with “user_” this
token is removed. $(CONFIG_DESC)
is a valid alternative, which expands
to the name of the TASKING
configuration description.

2-10

Build Process — Directory Structure

See the next section, “Command Line Project Information” on page 2-11, for
details about finding file names, paths, and other build information.

Command Line Project Information
When you build an application you can see information containing links at
the MATLAB command line. You can use these links to get further details
such as paths to projects, preprocessor defines, include paths, added files
and their locations.

The following example shows a typical output:

Building the PIL Application...
Updating EDE projects according to BuildInfo object.
Please wait...
Creating project: t_shift_alg_ert_rtw_pil.pjt
Updating preprocessor defines in project:
t_shift_alg_ert_rtw_pil.pjt
Updating include paths in project:
t_shift_alg_ert_rtw_pil.pjt
Adding source files to project:
t_shift_alg_ert_rtw_pil.pjt

You can click the hyperlinks within these messages to get more information.
The build messages are more readable with this information hidden, and the
links provide access when you require more details.

Click the project file name (e.g., t_shift_alg_ert_rtw_pil.pjt) to see the
full path to the project being built, like the following example:

Project path: D:\MATLAB\\work\tricore_fp\tricore_sim\
pjt_t_shift_alg_ert_rtw_pil\t_shift_alg_ert_rtw_pil.pjt

Click preprocessor defines to see a list of preprocessor defines similar
to the one in the following example:

t_shift_alg_ert_rtw_pil.pjt preprocessor defines:

ADD_MDL_NAME_TO_GLOBALS=1
INTEGER_CODE=0

2-11

2 Build Process

MAT_FILE=0
MODEL=t_shift_alg
MT=0
MULTI_INSTANCE_CODE=0
NCSTATES=0
NUMST=1
ONESTEPFCN=1
TERMFCN=1
TID01EQ=0

Click include paths to see a list of include paths similar to the one in the
following example:

t_shift_alg_ert_rtw_pil.pjt include paths:

$(PRODDIR)\include
D:\MATLAB\work\tricore_fp\t_shift_alg_ert_rtw
D:\MATLAB\work\tricore_fp
D:\MATLAB\matlab\toolbox\rtw\targets\tasking\taskingdemos
D:\MATLAB\matlab\extern\include
D:\MATLAB\matlab\simulink\include
D:\MATLAB\matlab\rtw\c\src
D:\MATLAB\matlab\rtw\c\libsrc
D:\MATLAB\matlab\rtw\c\ert
D:\MATLAB\work\tricore_fp\slprj\ert_sharedutils
D:\MATLAB\matlab\toolbox\rtw\targets\tasking\tasking\pil
D:\MATLAB\work\tricore_fp\t_shift_alg_ert_rtw_pil

Click source files to see a list of files added and their full paths.

t_shift_alg_ert_rtw_pil.pjt added files:

D:\MATLAB\toolbox\rtw\targets\tasking\tasking\pil\
pil_interface.h
D:\MATLAB\toolbox\rtw\targets\tasking\tasking\pil\
pil_interface_common.h
D:\MATLAB\toolbox\rtw\targets\tasking\tasking\pil\
pil_interface_lib.c
D:\MATLAB\toolbox\rtw\targets\tasking\tasking\pil\
pil_interface_lib.h

2-12

Build Process — Directory Structure

D:\MATLAB\toolbox\rtw\targets\tasking\tasking\
tasking_pil_main.c
D:\MATLAB\work\tricore_fp\t_shift_alg_ert_rtw_pil\
pil_interface.c
D:\MATLAB\work\tricore_fp\t_shift_alg_ert_rtw_pil\
pil_interface_data.h
D:\MATLAB\work\tricore_fp\tricore_sim\
pjt_exp_t_shift_alg_ert_rtw\exp_t_shift_alg_ert_rtw.pjt
D:\MATLAB\work\tricore_fp\tricore_sim\pjt_rtwlib\rtwlib.pjt

2-13

2 Build Process

2-14

3

Objects

Objects for Link for TASKING
(p. 3-2)

Introduction and definitions.

Classes (p. 3-3) Classes provided with Link for
TASKING.

Using Objects (p. 3-4) How to create objects and find
methods and properties.

List of Methods (p. 3-9) Tables showing the methods
available for Link for TASKING
objects.

3 Objects

Objects for Link for TASKING
Link for TASKING uses object-oriented programming techniques and requires
a basic knowledge of some object-oriented terminology. The following are
some fundamental terms you should understand:

• Object — Something you can operate on. An object is an instance of a class,
created by calling the class constructor.

• Class — A class defines the properties and methods common to all objects
of the class.

• Constructor — A function that creates an object, based on the class
definition, and initializes it.

• Method — An operation on an object, defined as part of the class definition.

• Property — Part of an object, treated as a variable at times, that is defined
as part of the class definition.

• Handle — A mechanism to access any object that Link for TASKING
creates. Used in this guide to refer to the object. Often the handle is the
name you assign when you create the object.

The following sections describe how to use and get help for Link for
TASKING objects. See “Objects Demo Example” on page 3-7 for an example
demonstrating some basic capabilities of Link for TASKING objects.

3-2

Classes

Classes
The following table shows the different classes that are provided with Link
for TASKING.

Class Description

tasking.edeapi Represents the TASKING EDE.

tasking.edeprojectspace Represents a project space in the
TASKING EDE.

tasking.edeproject Represents a project in the
TASKING EDE.

tasking.xviewapi Represents the TASKING
CrossView Pro debugger.

tasking.Tasking_Configuration Property of a tasking.edeapi
class representing TASKING
configuration details.

tasking.EDE_Configuration Property of a
tasking.tasking_Configuration
representing EDE configuration
details.

tasking.CrossView_Pro_Configuration Property of a
tasking.tasking_Configuration
representing CrossView Pro
configuration details.

3-3

3 Objects

Using Objects
The topics in this section are:

1 “Creating an Object” on page 3-4

2 “Determining the Available Methods for a Class” on page 3-6

3 “Obtaining Help for a Class Method” on page 3-6

4 “Calling a Method” on page 3-7

5 “Determining the Available Properties for a Class” on page 3-7

6 “Accessing a Property” on page 3-7

7 “Objects Demo Example” on page 3-7

Creating an Object
To find out how to create an object of a particular class you can use the
tasking_help function to find help for the constructor. At the MATLAB
command prompt, enter

tasking_help <classname>.<constructorname>

For example, for the tasking.edeapi class, enter

tasking_help tasking.edeapi.edeapi

For the tasking.edeprojectspace class, enter

tasking_help tasking.edeprojectspace.edeprojectspace

3-4

Using Objects

Follow these steps to create example objects.

1 To create a tasking.edeapi object, you call the constructor as follows:

Ede = tasking.edeapi

The name on the left side of the “=” could be any valid MATLAB identifier
and is the handle to the object.

You must choose a configuration, then communication is tested with the
TASKING EDE. At the command line you see the configuration target
preferences.

2 To create a tasking.edeprojectspace object, you call the constructor as
follows:

tasking.edeprojectspace(projspace, edeapi)

where projspace is the absolute path of the TASKING Project Space this
object will relate to, and edeapi is a tasking.edeapi object, as shown in
the following example:

ps = tasking.edeprojectspace('D:\MATLAB\work\
myprojspace.psp', Ede)

3 To create a tasking.edeproject object, you call the constructor as follows:

tasking.edeproject(proj, edeprojspace)

where proj is the absolute path of the TASKING Project this object relates
to, and edeapiprojspace is a tasking.edeprojectspace object, as shown
in the following example:

proj = tasking.edeproject('D:\MATLAB\work\myproj.pjt', ps)

4 To create a tasking.xviewapi object, you call the constructor as follows

xv = tasking.xviewapi

You must choose a configuration, then communication is tested with
CrossView Pro. At the command line, you see the configuration target
preferences.

3-5

3 Objects

Determining the Available Methods for a Class
After you create an object, you can find the available methods by running
the “methods” function.

1 For example, to find the methods available on the tasking.edeapi object
created above (in “Creating an Object” on page 3-4), enter methods(Ede).

2 To find the methods available on the tasking.edeprojectspace object
previously created, enter methods(ps).

3 To find the methods available on the tasking.edeproject object previously
created, enter methods(proj).

4 To find the methods available on the tasking.xviewapi object previously
created, enter methods(xv).

To see the methods available, refer to the tables in “List of Methods” on page
3-9.

Obtaining Help for a Class Method
To get help for a class method, you can use the tasking_help function.

For example, to find out more about the getProject method of the
tasking.edeapi class, you could enter the following command:

tasking_help tasking.edeapi.getProject

MATLAB returns the following output:

GETPROJECT - get the active Project in the EDE
project = getProject
project: edeproject object representing the active Project
in the EDE

project will be empty if there is no open project

To see the methods available, refer to the tables in “List of Methods” on page
3-9.

3-6

Using Objects

Calling a Method
When you know the details of a class method, you can call it using dot (.)
notation.

For example, to get a tasking.edeproject object representing the active
project, run the following command:

project = Ede.getProject

Determining the Available Properties for a Class
After you create an object, you can find the available properties by running
the get function.

For example, to find the properties available on the tasking.edeapi object
created above, enter

get(Ede)

Accessing a Property
You can access a property of a class using dot (.) notation.

For example, to get the “configuration” property of the tasking.edeapi object
created above, enter:

config = Ede.configuration
tasking.Tasking_Configuration (handle)

Configuration_Description: 'C166'
EDE_Configuration: [1x1 tasking.EDE_Configuration]

CrossView_Pro_Configuration: [1x1 tasking.CrossView_Pro_
Configuration]

Objects Demo Example
For experience using objects, you can work through the demo example,
tasking_demo_objects.m, found under Link for TASKING Demos.

This example provides step-by-step instructions for using Link for TASKING
objects to communicate with the TASKING EDE and CrossView Pro debugger
from the MATLAB command line. You can use any command available in

3-7

3 Objects

the powerful CrossView Pro command language. The demo illustrates using
objects during the process of building and debugging projects.

3-8

List of Methods

List of Methods
See the following tables for lists of available methods:

• “Methods for Class tasking.edeapi” on page 3-9

• “Methods for Class tasking.edeprojectspace” on page 3-10

• “Methods for Class tasking.edeproject” on page 3-10

• “Methods for Class tasking.xviewapi” on page 3-10

The public methods are shown in the tables (methods beginning with “p” or
“p_” are private methods and should not be used).

Methods for Class tasking.edeapi
closeIDE getOptionSetNames

disp getProject

display getProjectSpace

edeapi getTargetProject

exec getToolchainInfo

execApiMacro newProject

execRetNumeric newProjectSpace

execRetString newProjectTemplates

getCreatedEDEProcess newProjectTemplatesViaUI

getOptionSet newTempProjectSpaceIfNoneOpen

open processTemplateProject

openProjectTemplates validateToolchainDirectory

pwd

3-9

3 Objects

Methods for Class tasking.edeprojectspace
add deleteParentDir

getEDE isopen

checkValid disp

getOriginalPath new

checkValidProject display

getPath open

close edeprojectspace

isequal remove

Methods for Class tasking.edeproject
add getEDE isopen

build getFiles new

checkValid getHyperlink open

close getIncludes rebuild

debug getMakeCmd remove

disp getOriginalPath run

display getPath setCDefines

edeproject getProjectSpace setIncludes

getBuildOutput getTarget setPerformToolchainName-
Check

getCDefines hasFile

getDir isequal

Methods for Class tasking.xviewapi
addBreakpointCallback getEventReporting

getFunctionConfiguration debug

disp halt

3-10

List of Methods

removeBreakpointCallbacks display

isRunning setEventReporting

downloadAndRun execute

xviewapi executeAndWait

getCommandResponse

3-11

3 Objects

3-12

4

Processor-in-the-Loop (PIL)
Cosimulation

Overview of PIL Cosimulation
(p. 4-2)

Defining processor-in-the-loop (PIL)
Cosimulation.

Creating a PIL Block (p. 4-5) How to create a PIL block.

The PIL Cosimulation Block (p. 4-7) Describing the Simulink block
interface to PIL.

Building, Running, and Debugging
PIL Applications (p. 4-10)

How to use the PIL block to build,
download, cosimulate, and debug
PIL applications.

4 Processor-in-the-Loop (PIL) Cosimulation

Overview of PIL Cosimulation
Link for TASKING supports processor-in-the-loop (PIL) cosimulation, a
technique that is designed to help you evaluate how well a candidate
algorithm (e.g., a control system) operates on the actual target processor
selected for the application.

During the Real-Time Workshop Embedded Coder code generation process,
Link for TASKING can create a PIL block from one of several Simulink
components including a model, a subsystem in a model, or subsystem in a
library. You then place the generated PIL block inside a Simulink model
that serves as the test harness and run tests to evaluate the target-specific
code execution behavior.

Why Use Cosimulation?
PIL cosimulation is particularly useful for simulating, testing, and validating
a controller algorithm in a system comprising a plant and a controller. In
classic closed-loop simulation, Simulink and Stateflow® model such a system
as two subsystems and the signals transmitted between them, as shown in
this block diagram.

Your starting point in developing a plant/controller system is to model
the system as two subsystems in closed-loop simulation. As your design
progresses, you can use Simulink external mode with standard Real-Time

4-2

Overview of PIL Cosimulation

Workshop targets (such as GRT or ERT) to help you model the control system
separately from the plant.

However, these simulation techniques do not help you to account for
restrictions and requirements imposed by the hardware (e.g., limited memory
resources, or behavior of target-specific optimized code). When you finally
reach the stage of deploying controller code on the target hardware, you may
need to make extensive adjustments to the controller system. After these
adjustments are made, your deployed system may diverge significantly from
the original model. Such discrepancies can create difficulties if you need to
return to the original model and change it.

PIL cosimulation addresses these issues by providing an intermediate stage
between simulation and deployment. The term cosimulation reflects a
division of labor in which Simulink models the plant, while code generated
from the controller subsystem runs on the actual target hardware. In a PIL
cosimulation, the target processor participates fully in the simulation loop —
hence the term processor-in-the-loop.

Definitions
PIL Algorithm

The algorithmic code (e.g., the control algorithm) to be tested during the PIL
cosimulation. The PIL algorithm resides in compiled object form to allow
verification at the object level.

PIL Application

The executable application to be run on the target platform. The PIL
application is created by linking the PIL algorithm object code with some
wrapper code (or test harness) that provides an execution framework that
interfaces to the PIL algorithm.

The wrapper code includes the string.h header file so that the memcpy
function is available to the PIL application. The PIL application uses memcpy
to facilitate data exchange between Simulink and the cosimulation target.

4-3

4 Processor-in-the-Loop (PIL) Cosimulation

Note Whether the PIL algorithm code under test uses string.h is
independent of the use of string.h by the wrapper code, and is entirely
dependent on the implementation of the algorithm in the generated code.

How Cosimulation Works
In a PIL cosimulation, Real-Time Workshop generates efficient code for the
PIL algorithm. This code runs (in simulated time) on a target platform. The
plant model remains in Simulink without the use of code generation.

During PIL cosimulation, Simulink simulates the plant model for one sample
interval and exports the output signals (Yout of the plant) to the target
platform via the CrossView Pro debugger. When the target platform receives
signals from the plant model, it executes the PIL algorithm for one sample
step. The PIL algorithm returns its output signals (Yout of the algorithm)
computed during this step to Simulink, via the CrossView Pro debugger.
At this point, one sample cycle of the simulation is complete and the plant
model proceeds to the next sample interval. The process repeats and the
simulation progresses.

PIL tests do not run in real time. After each sample period, the tests halts to
ensure that all data has been exchanged between the Simulink test harness
and object code. You can then check functional differences between the model
and generated code. During a PIL test, you can use the TASKING debugger
to set breakpoints, step through the code, and watch variables.

After the test, Link for TASKING returns execution profiling and code
coverage reports to MATLAB for your review. See “Coverage and Profiling
Reports” on page 4-13 for more information.

4-4

Creating a PIL Block

Creating a PIL Block
The PIL settings can be found in the Configuration Parameters dialog box
under the Link for TASKING settings.

The following options are available under Processor-in-the-Loop (PIL)
Verification

• Configure model to build PIL algorithm object code

Select this box to create PIL algorithm object code as part of the Real-Time
Workshop code generation process.

• PIL block action

Select one of the following PIL block actions:

- Create PIL block, then build and download PIL application

4-5

4 Processor-in-the-Loop (PIL) Cosimulation

Select this option to automatically build and download the PIL
application after creating the PIL block. This option is the default when
you select the option to configure the model for PIL.

- Create PIL block

Choose this option to create the PIL block and then stop without
building. You can build manually from the PIL block.

- None

Choose this option to avoid creating a PIL block, for instance if you have
already built a PIL block and do not want to repeat the action.

After you create and build a PIL block, you can either:

• Copy it into your model to replace the original subsystem (save the original
subsystem in a different model so it can be restored), or

• Add it to your model to compare with the original subsystem during
cosimulation.

See “Building, Running, and Debugging PIL Applications” on page 4-10 for
more details.

4-6

The PIL Cosimulation Block

The PIL Cosimulation Block
The PIL cosimulation block is the Simulink block interface to PIL. The
Simulink inputs and outputs of the PIL cosimulation block are configured to
match the input and output specification of the PIL algorithm.

The block is a basic building block that allows you to:

• Select a PIL algorithm

• Choose a PIL configuration

• Build and download a PIL application

• Run a PIL cosimulation

See the next section, “Building, Running, and Debugging PIL Applications” on
page 4-10 for instructions for using the PIL block.

4-7

4 Processor-in-the-Loop (PIL) Cosimulation

The PIL block takes the same shape and signal names as the parent
subsystem, like those in the following example. This inheritance is convenient
for copying the PIL block into the model to replace the original subsystem
for cosimulation.

Link for TASKING creates PIL blocks with both the "Simulink system path"
and "Configuration" properties automatically configured. These parameters
have the following characteristics:

Simulink system path — Allows you to select a PIL algorithm. You specify
the path of a Simulink system (model or subsystem) as the source of the
generated PIL algorithm to use for cosimulation.

The Simulink system path is the full path to the system and “/” must be
escaped to “//”. For example, a subsystem named "fuel/sys" inside a model
named "tasking_demo_fuelsys" would have the escaped system path:

tasking_demo_fuelsys/fuel//sys

The correct system path can be obtained by clicking on the system and then
running the gcb command. In this example,

>> gcb
ans =
tasking_demo_fuelsys/fuel//sys

Configuration — Allows you to specify a PIL configuration to use for
building the PIL application and running the subsequent cosimulation.
The available configurations correspond to the TASKING configuration
descriptions in the Target Preferences.

4-8

The PIL Cosimulation Block

Some guidelines for choosing a valid configuration:

1 The configuration must generate debugging information because Link
for TASKING requires this information to communicate with the PIL
application.

2 The configuration must be compatible with the TASKING configuration
description that was used to build the PIL algorithm. The fact that these
two configurations need not match exactly allows the flexibility for the PIL
algorithm to be compiled as if for a production environment, for example,
without generating debugging information. However, you must be careful
to ensure that the configurations are compatible in terms of linking,
otherwise build errors occur when building the PIL application. In many
cases, it is appropriate to use exactly the same configuration for building
both the PIL algorithm and PIL application and therefore no errors can
ever occur because of incompatibilities between configurations.

4-9

4 Processor-in-the-Loop (PIL) Cosimulation

Building, Running, and Debugging PIL Applications
This section includes the following topics:

• “Building and Downloading PIL Applications” on page 4-10

• “PIL Debugging” on page 4-11

• “Coverage and Profiling Reports” on page 4-13

Building and Downloading PIL Applications
After you create a PIL block, you must build and download it before you can
use it for cosimulation. You can use the PIL Block Action setting in the
Configuration Parameters to automatically build and download the PIL
application after the PIL block is created (select Create PIL block, then
build and download PIL application). If you choose not to use this option,
you can use the PIL block to build and download manually.

To build and download the PIL application manually:

1 Double-click the PIL block to open the mask.

2 Click Build. Wait until the Application name in the mask is updated and
you see the “build complete” message.

3 Click Download.

4 Wait until the output in the MATLAB command window stops and you see
the “download complete” message in the PIL block, and then click OK to
close the block mask.

The PIL Application is now ready. To cosimulate with it, you must copy
the PIL block into your model, either to replace the original subsystem
or in addition to it for comparison. Click Start Simulation to run a PIL
cosimulation.

Note When copying PIL blocks to be used in the same model or in different
models that simulate simultaneously, you must click the Download button in
the PIL block mask in the new block after copying.

4-10

Building, Running, and Debugging PIL Applications

Clicking Download creates new connections (handles) to the TASKING EDE
and CrossView Pro debugger. Otherwise, the same debugger handle may
be used by multiple PIL blocks simultaneously and cosimulation errors or
incorrect results may occur. This concern does not apply when copying PIL
blocks created automatically as part of the build process because the untitled
model and test harness are typically not simulated together.

See the Link for TASKING demo models for examples with instructions to
enable you to build and download PIL blocks and use them in cosimulation.

PIL Debugging
Prior to PIL cosimulation you can use the CrossView Pro debugger to set
breakpoints, so that you can step through the code and watch variables during
cosimulation. To do this, you must set breakpoints in CrossView Pro prior to
starting the cosimulation as follows:

1 When the build process completes, a minimized CrossView Pro window
should appear on your Windows Start menu. Maximize the CrossView
Pro window.

2 In CrossView Pro, select File > Open Source, and choose a source file to
open. A typical choice would be to open the main generated file associated
with the algorithm, e.g. model.c.

3 Choose a location in the file to set a breakpoint and click the “breakpoint”
button to the left of the line. A typical location for setting a breakpoint in
the model.c file would be one of the step functions.

Note You can set multiple breakpoints in multiple files if you wish.

4 To add a variable to the watch, double-click the variable, and then click
Add Watch in the Expression Evaluation window. A typical variable to
add to the watch would be either the external inputs or external outputs
structures, which usually represent all of the inputs and outputs of the
algorithm.

4-11

4 Processor-in-the-Loop (PIL) Cosimulation

5 Start the PIL cosimulation in Simulink. When the breakpoint is hit,
Simulink pauses. CrossView Pro is available for debugging, and watch
variables are updated. You can step through the code, set more breakpoints,
and analyze data.

6 When you are finished debugging, you can continue running by clicking the
“play” button in CrossView Pro. This will allow the PIL cosimulation to
continue. If you left the breakpoint in place then the cosimulation stops
at that point again. To return to uninterrupted cosimulation, remove the
breakpoints.

Caution Never remove the PIL synchronization breakpoint (usually set on
the pilaction function). This breakpoint is used to maintain synchronization
between Simulink and CrossView Pro.

As an alternative to manual configuration in CrossView Pro, you can obtain a
handle to the tasking.xviewapi object associated with a PIL block by using
the tasking_pil_crossview_handle command as follows:

crossview = tasking_pil_crossview_handle('block')

where block is the full Simulink system path to the PIL block. You can use
gcb to obtain the system path after clicking on the PIL block.

This handle can be used prior to PIL cosimulation to configure breakpoints,
etc., by using the CrossView Pro command language.

Caution This handle should not be used during PIL cosimulation as this
could lead to incorrect PIL results or termination of the PIL cosimulation.

10-Second Pause on Termination of the CrossView Pro
Debugger
When terminating an instance of the CrossView Pro debugger application
that was launched by Link for TASKING, there is a pause of about 10 seconds

4-12

Building, Running, and Debugging PIL Applications

before the CrossView Pro window closes. This 10-second pause is the intended
behavior of CrossView Pro when acting as a COM server; CrossView Pro
pauses for the 10 seconds to wait for clients such as MATLAB to release their
COM references.

Coverage and Profiling Reports
After you download the PIL application and run a cosimulation, you can view
reports in MATLAB. The reports available depend on the target configuration.
For example, for C166 Simulator you can view C code coverage, profiling and
cumulative profiling reports. Messages at the command line detail which
reports are available with hyperlinks, as shown in the following example:

PIL reports available from CrossView Pro for block: fuelsys
Coverage ("covinfo"): Yes (pil_coverage_report)
Profiling ("proinfo"): Yes (pil_profiling_report)
Cumulative profiling ("cproinfo"): Yes
(pil_cumulative_profiling_report)

Click the variable name hyperlinks (e.g., pil_coverage_report) to view the
reports, similar to the two following examples:

pil_coverage_report =

Module: ..\..\fuelsys0_ert_rtw_pil\pil_interface.c 81%
Function: pilInitialize 77%
Function: initUDataProcessing 76%
Function: processUData 100%
Function: checkDataProcessingComplete 100%
Function: pilStep 71%
Function: initYDataProcessing 76%
Function: processYData 100%
Function: pilTerminate 75%

Module: ..\..\..\..\..\..\aetargets with spaces\matlab\
toolbox\rtw\targets\tasking\tasking\pil\
pil_interface_lib.c 90%
Function: getNextSymbol 100%
Function: processData 90%
Function: resetLibSymbolState 100%
Function: checkDataProcessing 78%

4-13

4 Processor-in-the-Loop (PIL) Cosimulation

Module: ..\..\..\..\..\..\aetargets with spaces\matlab\
toolbox\rtw\targets\tasking\tasking\tasking_pil_main.c 72%
Function: singleshotStep 97%
Function: taskingStep 75%
Function: taskingProcessUData 95%
Function: taskingProcessYData 95%
Function: pilaction 39%
Function: main 80%

Module: ..\..\fuelsys0_ert_rtw\fuelsys0.c 42%
Function: Sens_Failure_Counter 13%
Function: Fueling_Mode 16%
Function: Init_controllogic 100%
Function: controllogic 48%
Function: fuelsys0_step 45%
Function: fuelsys0_initialize 100%
Function: fuelsys0_terminate 100%

Module: MEMCPY_C 100%
Module: MEMSET_C 100%
Module: CPNNW 50%
Module: MUL 0%
Module: ..\..\slprj\ert_sharedutils\
binarysearch_s16.c 89%
Function: BINARYSEARCH_S16 89%

Module: ..\..\slprj\ert_sharedutils\
dotproduct_s32s16.c 0%
Function: DotProduct_s32s16 0%

Module: ..\..\slprj\ert_sharedutils\
interpolate_even_s16_s16_sat.c 0%
Function: INTERPOLATE_EVEN_S16_S16_SAT 0%

Module: ..\..\slprj\ert_sharedutils\
interpolate_s16_s16_sat.c 56%
Function: INTERPOLATE_S16_S16_SAT 56%

Module: ..\..\slprj\ert_sharedutils\
look2d_s16_s16_s16_sat.c 100%
Function: Look2D_S16_S16_S16_SAT 100%

Module: ..\..\slprj\ert_sharedutils\
div_s32_sat_floor.c 67%
Function: div_s32_sat_floor 67%

Module: ..\..\slprj\ert_sharedutils\
fix2fix_s16_s32_sat.c 75%

4-14

Building, Running, and Debugging PIL Applications

Function: FIX2FIX_S16_S32_SAT 75%
Module: UDIL 29%
Module: UMOL 24%
Module: fuelsys0_ert_rtw_pil 0%
Module: CSTART 0%
Module: ..\..\fuelsys0_ert_rtw\fuelsys0_data.c 0%

pil_profiling_report =

Total Execution Time: 473348
Cycles %Cycles

Function: pilInitialize 18 0.004%
Function: initUDataProcessing 2828 0.597%
Function: processUData 1616 0.341%
Function: checkDataProcessingComplete 2020 0.427%
Function: pilStep 2626 0.555%
Function: initYDataProcessing 2828 0.597%
Function: processYData 1616 0.341%
Function: pilTerminate 16 0.003%
Function: getNextSymbol 37370 7.895%
Function: processData 61610 13.02%
Function: resetLibSymbolState 2828 0.597%
Function: checkDataProcessing 8080 1.707%
Function: singleshotStep 15150 3.201%
Function: taskingStep 1616 0.341%
Function: taskingProcessUData 9898 2.091%
Function: taskingProcessYData 9898 2.091%
Function: pilaction 5716 1.208%
Function: main 1886 0.398%
Function: Sens_Failure_Counter 3000 0.634%
Function: Fueling_Mode 8800 1.859%
Function: Init_controllogic 62 0.013%
Function: controllogic 17366 3.669%
Function: fuelsys0_step 66864 14.13%
Function: fuelsys0_initialize 54 0.011%
Function: fuelsys0_terminate 4 0.001%
Function: BINARYSEARCH_S16 41002 8.662%
Function: DotProduct_s32s16 0 0.000%
Function: INTERPOLATE_EVEN_S16_S16_SAT 0 0.000%
Function: INTERPOLATE_S16_S16_SAT 28678 6.059%

4-15

4 Processor-in-the-Loop (PIL) Cosimulation

Function: Look2D_S16_S16_S16_SAT 32320 6.828%
Function: div_s32_sat_floor 31782 6.714%
Function: FIX2FIX_S16_S32_SAT 4980 1.052%
Module: MEMCPY_C 23230 4.908%
Module: MEMSET_C 536 0.113%
Module: CPNNW 22624 4.780%
Module: MUL 0 0.000%
Module: UDIL 10624 2.244%
Module: UMOL 10292 2.174%
Module: fuelsys0_ert_rtw_pil 0 0.000%
Module: CSTART 0 0.000%
147: switch(tasking_pil_main_action) {

For cumulative profiling, command line messages like the following inform
you that you must configure CrossView Pro to specify which functions to
collect data for. Select Tools > Cumulative Profiling Setup, and then run
the cosimulation again to get the report.

NOTE: Cumulative profiling requires manual setup in
CrossView Pro.
See Tools->Cumulative Profiling Setup
DO NOT add function, pilaction, to the list of functions
to profile.
You must then run the PIL simulation again
to generate the report.

pil_cumulative_profiling_report =

CrossView Cumulative Profiling Report

Total Execution Time: 3790326
Function Calls Recursive
Min.Time Max.Time Avg.Time Total Time %Time

For information on build messages containing links at the command line, see
“Command Line Project Information” on page 2-11.

4-16

5

Tutorials

Tutorial: Using Option Sets (p. 5-2) How to use option sets to switch
between preconfigured project
settings.

Tutorial: Creating New Template
Projects (p. 5-4)

Steps for creating new template
projects.

Tutorial: Configuring an Existing
Model for Link for TASKING (p. 5-8)

An example showing how to
configure an existing model for Link
for TASKING.

Tutorial: Build Actions (p. 5-10) How to use different build actions
with Link for TASKING.

5 Tutorials

Tutorial: Using Option Sets
Option sets are preconfigured settings to specify the target configuration for
the TASKING tools. You use option sets to apply EDE project settings (e.g.,
compiler and linker settings, hardware or simulator) that you can then modify
if you choose. For example, once you have set up your target preferences for
a Tricore configuration, you can use option sets to switch between using an
instruction set simulator configuration, two hardware board configurations,
or a simulator with some MISRA-C rule checking.

To choose an option set:

1 Select Start > Simulink > Link for TASKING > Select Preconfigured
Target Preference Settings.

The TASKING Configuration Selection dialog box appears.

2 Select a target configuration (e.g., C166, TriCore) from the list in the dialog
box, and click OK.

The Option Set Selection dialog box appears.

3 Select an option set. The list items are specific to the configuration you
selected; the available option sets are listed in “Option Sets” on page 1-22.
Click OK.

Your target preferences are automatically updated according to the option
set you select, and command line messages inform you the following target
preferences have changed:

• EDE_Configuration

Template_Application_Project: Set to default template application
project relating to the option set.

Template_Library_Project: Set to default template library project
relating to the option set.

• CrossView_Pro_Configuration

Initialization_File: Set to CrossView Pro (.st) initialization file
relating to the option set.

5-2

Tutorial: Using Option Sets

Now, when you build any model configured for the same target (e.g.,
TriCore), these project settings are used. To switch to a different option
set, repeat the steps.

You can also use option sets to set up an initial configuration when creating
new template projects. See “Tutorial: Creating New Template Projects” on
page 5-4.

5-3

5 Tutorials

Tutorial: Creating New Template Projects
In this tutorial, you create new template projects for a target configuration
and set up options such as simulator or hardware implementation, compiler
and linker settings, MISRA-C rule checking, or any other project options.
Every time you build a model for the selected target configuration, the project
options you have set up in the new template projects are used.

To create custom application and library template projects:

1 Select Start > Simulink > Link for TASKING > Create New
Template Projects.

2 When prompted to select a configuration, select your target (e.g., TriCore),
and click OK.

Your target preferences for the location of your TASKING installation
must be set up for the target configuration you choose (see “Setting Target
Preferences” on page 1-7).

a Make sure the fields are filled in for this configuration (except the
Application and Library Template Projects fields, and CrossView
Initialization field, which are autopopulated during the following steps).

b If your target preferences are set up correctly, your TASKING EDE
launches when you click OK.

3 When you are prompted, choose a location for the template projects, and
enter the template name.

4 When you are prompted, choose an option set. An option set delineates
options specific to your target, such as whether you want to use simulator
or hardware. You can use these to set up an initial configuration to modify
later. See “Option Sets” on page 1-22 for more information and a list of
available option sets.

You now have custom template projects for this new configuration. The
EDE project settings associated with the option set are applied to the new
template projects. Your target preferences are automatically updated
according to the option set you select. Messages at the command line
inform you the following target preferences have changed:

5-4

Tutorial: Creating New Template Projects

• EDE_Configuration

Template_Application_Project: Set to new template application
project configured by the option set.

Template_Library_Project: Set to new template library project
configured by the option set.

• CrossView_Pro_Configuration

Initialization_File: Set to CrossView Pro (.st) initialization file
configured by the option set.

Note You can always choose a preconfigured option set to return to the
default settings (using the Start menu option Select Preconfigured
Target Preference Settings).

Next, modify the compiler settings for these new template projects.

5 To modify the template projects, you need to open them in the TASKING
EDE:

a Select Start > Simulink > Link for TASKING > Open Existing
Template Projects.

b When you are prompted to select a configuration, select the same target
for which you created new template projects, and click OK.

The template projects should now be open in the EDE.

c Right-click the project in the TASKING EDE, and select Project
Options. You can now modify the project options (compiler settings,
linker settings, etc.).

d When done, close the template projects in the TASKING EDE.

6 To modify your CrossView Pro configuration you need to specify a .ini file
in the Initialization_File Target Preference field. See Initialization
in the section “Target Preference Fields” on page 1-9.

You are now ready to use the configuration.

5-5

5 Tutorials

7 Open any Simulink model that is configured with Link for TASKING
(tasking_demo_fuelsys, for example).

8 Select Simulation > Configuration Parameters. The Configuration
Parameters dialog box opens.

9 Select Link for TASKING on the left-side panel. When you select your
target in the TASKING Configuration Description menu, the template
projects you have set up are used.

See “Template Projects” on page 2-5 for details about how Link for TASKING
uses template projects during the build process.

You may want to create a new configuration to use with new template
projects. See the next section, “Tutorial: Creating a New Configuration” on
page 5-6 for details.

Tutorial: Creating a New Configuration
You can customize the default Target Preference configurations by choosing
from the preconfigured options sets, or by creating new template projects.

However, it may be useful to create a new Target Preference configuration
if you want to switch between them in the TASKING Configuration
Description menu. For example, if your target is TriCore, you could set
up a new configuration called TriCore_user to specify hardware settings
for your target; then you can easily switch between TriCore (the default
instruction set simulator configuration) and TriCore_user using the
TASKING Configuration Description menu in your model’s Configuration
Parameters dialog box.

In this tutorial, you create a new TASKING configuration and save it in the
TASKING target preferences. You can then use your new configuration in any
Simulink model that is configured with Link for TASKING by selecting it in
the TASKING Configuration Description menu.

To create a new configuration:

1 From the MATLAB Start menu select Simulink > Link for TASKING
> TASKING Target Preferences.

5-6

Tutorial: Creating New Template Projects

2 Select Create new Configuration, and click OK.

3 Expand Configuration_Options.

4 Type Tutorial in the Configuration_Description field.

5 Fill in the rest of the fields for this configuration. See “Setting Target
Preferences” on page 1-7 to set these fields properly.

a You must specify the location of your toolset, by filling in the path to the
CrossView_Pro_Executable, the DOL_File, and the EDE_Executable.

b You can set up the template projects and CrossView initialization fields
automatically in one of two ways:

• You can use the Start menu option Select Preconfigured Target
Preference Settings. See “Tutorial: Using Option Sets” on page
5-2 for instructions.

• You can create new template projects for this configuration. See
“Tutorial: Creating New Template Projects” on page 5-4.

If you are going to use either of these options you can leave the template
projects and CrossView initialization fields blank, because they will be
filled in automatically when you follow the steps in using option sets
or creating new template projects.

Click OK to close and save your target preferences.

6 After you save your target preferences, you can use the new Tutorial
configuration in any model that is configured with Link for TASKING.
For example, open any of the Link for TASKING demo models (such as
tasking_demo_fuelsys).

7 Select Simulation > Configuration Parameters. The Configuration
Parameters dialog box opens.

8 Select Link for TASKING on the left-side panel. Click the TASKING
Configuration Description menu, and notice that the Tutorial
configuration now appears in the list.

5-7

5 Tutorials

Tutorial: Configuring an Existing Model for Link for
TASKING

In this tutorial, you configure an existing fixed-point model and build it with
Link for TASKING.

1 At the MATLAB command prompt, type rtwdemo_fixptdiv to open a
fixed-point demo model.

2 Switch the model to use Real-Time Workshop Embedded Coder as follows:

a Select Simulation > Configuration Parameters, and click
Real-Time Workshop.

b Click Browse and select ert.tlc (first item in the list). Click OK.

3 Select Tools > Link for TASKING > Add Link for TASKING
Configuration to Model to add the Link for TASKING configuration
set to the model.

4 Open the Configuration Parameters dialog box again from the Simulation
menu, and verify that the Link for TASKING configuration set is now
added to the model. Select Link for TASKING from the left panel:

a Set the Build Action to Create and Build Application Project.

b Select the TASKING Configuration Description to match your target.

c Select the check box option to Specify Build Subdirectory Name, and
type <target>_int in the Build Subdirectory Name field. Replace
the string <target> with your real target, e.g., c166_int.

d Under the Real-Time Workshop options, select Interface and clear
the check box for floating-point numbers support under Software
environment, because this model is fixed point. Clearing this option
instructs Real-Time Workshop to avoid building the floating-point
version of the rtwlib library.

e Under Real-Time Workshop, select Hardware Implementation, and
select your device type. See the demo models for examples. Some devices
use custom settings, others have preconfigured settings, for example:

• For C166 platforms, select Infineon C16x, XC16x.

5-8

Tutorial: Configuring an Existing Model for Link for TASKING

• For TriCore platforms, select Infineon TriCore.

• For ARM platforms, select ARM 7/8/9.

• For Renesas M16C, 8051 Compatible, or Freescale DSP563xx (16-bit
mode) platforms, select those options.

You are now ready to build the model. Press Ctrl+B or select
Tools > Real-Time Workshop > Build Model.

5-9

5 Tutorials

Tutorial: Build Actions
Models configured with Link for TASKING have a build action setting that
instructs Real-Time Workshop to perform different actions when the model
is built. The following example explains what you can do by setting the
build action.

Open any model configured with Link for TASKING (example, demo model
tasking_demo_fuelsys).

Select Simulation > Configuration Parameters, and click the Link for
TASKING configuration set. Under Build Configuration, the Build
Action list has six different settings, as shown in the following figure.

5-10

Tutorial: Build Actions

• Create Application Project

Generates code for the model or subsystem, creates a TASKING application
project for the selected TASKING configuration, connects to the TASKING
EDE, and opens the application project (in addition to the required
Real-Time Workshop and DSP Library projects, if required) in the
TASKING EDE. This option does not build or execute the application.

An EDE_Obj object handle is exported to the MATLAB workspace (if this
option is selected). This object allows you to interact with the TASKING
EDE from MATLAB. For more information, see the section on using object
handles, Chapter 3, “Objects”.

Note To manually build the generated project in the TASKING EDE,
right-click on the application project (starts with the same name as the
model name), and select Build.

• Create Library Project

Performs the same actions as Create Application Project, but this
option archives the generated code into a library in TASKING. No main.c
file is generated.

• Create and Build Application Project

Performs the same actions as Create Application Project, but also
instructs TASKING to build the application project.

Note To manually debug the executable from the application project, click
the Debug Application icon in the TASKING EDE.

• Create and Build Library Project

Performs the same actions as Create Library Project, but also instructs
TASKING to build the Library project.

• Create, Build and Execute Application Project

Performs the same actions as Create and Build Application Project
and also downloads the executable file to your CrossView Target and runs

5-11

5 Tutorials

the executable. No debugging information is downloaded into the target
with this option.

A CrossView Pro object handle is exported to the MATLAB workspace
(if this option is selected). This object allows you to interact with the
CrossView Pro debugger from MATLAB. For more information, see the
section on using object handles, Chapter 3, “Objects”.

• Create, Build and Debug Application Project

Performs the same actions as Create, Build and Execute Application
Project but also downloads debugging information to the target. This
option behaves the same way as the Debug Application icon in the
TASKING EDE.

5-12

Index

IndexA
Add Link for TASKING Configuration to

Model 1-20

B
build action 1-26

setting 1-16
tutorial 5-10

build configuration 1-26
build process

command line information 2-11
directory structure 2-10
overview 2-2
shared libraries 2-7
template projects 2-5

build subdirectory name 1-26

C
classes 3-3
configuration options 1-24
configuration sets 1-13
Configure model to build PIL algorithm object

code 1-27
Create a New Model (configured for Link for

TASKING) 1-19
Create New Template Projects 1-19
CrossView Pro handle name 1-27

D
Demos 1-20

E
EDE handle name 1-26
Export CrossView Pro handle to MATLAB

base workspace 1-26
Export EDE handle to MATLAB base

workspace 1-26

Export handles 1-26

L
Launch and Test Communication with

TASKING EDE 1-19
Link for TASKING

build process 2-1
introduction 1-2
limitations and tips 1-28
objects 3-1
PIL cosimulation 4-1
Start menu 1-18
supported toolsets 1-4
target preferences 1-7
Tools menu 1-20
tutorials 5-1
user guide 1-6

M
methods

tasking.edeapi 3-9
tasking.edeproject 3-10
tasking.edeprojectspace 3-10
tasking.xviewapi 3-10

N
new configuration

creating 5-6

O
objects

accessing properties 3-7
calling methods 3-7
creating 3-4
demo 3-7
finding methods 3-6
finding properties 3-7

Index-1

Index

list of methods 3-9
obtaining method help 3-6
terms 3-2
using 3-4

Open Existing Template Projects 1-20
option sets 1-22

tutorial 5-2
Options 1-21

P
PIL block 4-7

creating 4-5
PIL block action 1-27
PIL cosimulation

building and downloading 4-10
coverage and profiling reports 4-13
debugging 4-11
definitions 4-3
how cosimulation works 4-4
overview 4-2

Processor-in-the-Loop (PIL) Verification 1-27
project-based build process 2-4

R
Remove Link for TASKING Configuration

from Model 1-21

S
Select Preconfigured Target Preference

Settings 1-19

Specify build subdirectory name 1-26

T
target preferences

fields 1-9
setting 1-7

TASKING configuration description 1-26
TASKING CrossView Pro (Debugger)

MATLAB API 1-3
TASKING EDE

MATLAB API 1-3
TASKING Target Preferences

Start menu 1-19
Tools menu 1-20

template projects 2-5
creating 5-4

tutorial
build actions 5-10
configuring existing models 5-8
new configuration 5-6
new template projects 5-4
option sets 5-2

V
View, Modify, and Copy Configuration Sets via

Model Explorer 1-19

Index-2

	toc
	Getting Started
	What Is Link for TASKING?
	Supported TASKING Toolsets
	Support for Other Versions

	Using This Guide
	Setting Target Preferences
	Target Preference Fields

	Working with Configuration Sets
	Setting Build Action

	Link for TASKING Menus
	Start Menu Items
	Tools Menu Items

	Option Sets
	Link for TASKING Configuration Options
	Known Limitations and Tips
	Build Process
	EDE Is Slow, Unresponsive, or Crashes
	Signal Processing Blockset Library Build Failures
	Model Reference Is Not Supported
	Real-Time Workshop “grt.tlc”-Based Targets Are Only Supported fo
	Use ERT Target for TASKING TriCore 1766B
	Memory Block Freed Twice Error
	8051 EDE Cannot Compile Files with Long Names
	8051 Compiler Bug: Assertion Failure
	ARM GRT Build Failure
	DSP563xx Toolset Support Limitations
	“Create, Build and Execute Application Project” Build Action Fai
	C166 Toolset Warnings

	Processor-in-the-Loop (PIL)
	10-Second Pause on Termination of the CrossView Pro Debugger
	TASKING TriCore 1766B PIL Limitation
	8051 Link-Order Issue Can Cause PIL Application Failure
	8051 PIL Timeout Errors
	Buses and Mux Signals Not Supported at PIL Component Boundary
	Signals with Custom Storage Classes Not Supported at PIL Compon
	Continuous Sample Times Not Supported
	Real-Time Workshop “grt.tlc”-Based Targets Not Supported
	Enabled / Triggered Subsystems Are Not Supported
	No Support for TASKING Feature “Treat double as float”
	TASKING Optimization Settings May Cause Incorrect Cosimulation R
	Export Functions Feature Is Not Supported

	Build Process
	Build Process Overview
	Code Generation Process
	Build Process
	Memory Placement Example

	Project-Based Build Process
	Target Project Space

	Template Projects
	Relocation of Template Projects
	How the Build Process Modifies the Relocated Template Project

	Shared Libraries
	Utility Function Generation: Shared Location
	Supporting Multiple Shared Utility Function Locations: Build Sub

	Build Process — Directory Structure
	Command Line Project Information

	Objects
	Objects for Link for TASKING
	Classes
	Using Objects
	Creating an Object
	Determining the Available Methods for a Class
	Obtaining Help for a Class Method
	Calling a Method
	Determining the Available Properties for a Class
	Accessing a Property
	Objects Demo Example

	List of Methods
	Methods for Class tasking.edeapi
	Methods for Class tasking.edeprojectspace
	Methods for Class tasking.edeproject
	Methods for Class tasking.xviewapi

	Processor-in-the-Loop (PIL) Cosimulation
	Overview of PIL Cosimulation
	Why Use Cosimulation?
	Definitions
	How Cosimulation Works

	Creating a PIL Block
	The PIL Cosimulation Block
	Building, Running, and Debugging PIL Applications
	Building and Downloading PIL Applications
	PIL Debugging
	10-Second Pause on Termination of the CrossView Pro Debugger

	Coverage and Profiling Reports

	Tutorials
	Tutorial: Using Option Sets
	Tutorial: Creating New Template Projects
	Tutorial: Creating a New Configuration

	Tutorial: Configuring an Existing Model for Link for TASKING
	Tutorial: Build Actions

	Index

